OFFSET
0,1
COMMENTS
(5*Pi/32)*a^2 is the area of a simple folium also called ovoid, or Kepler egg whose polar equation is r = a*cos^3(t) and Cartesian equation is (x^2+y^2)^2 = a * x^3. See the curve at the Mathcurve link.
LINKS
Robert Ferréol, Simple folium, Mathcurve.
FORMULA
Equals Integral_{t=0..Pi} cos^6(t)/2 dt (area of simple folium).
From Amiram Eldar, Aug 13 2020: (Start)
Equals Integral_{x=0..oo} 1/(x^2 + 1)^4 dx.
Equals Integral_{x=-1..1} x^3 * arcsin(x) dx. (End)
Equals 5/9 - 10*Sum_{n >= 1} (-1)^(n+1)/(u(n)*u(-n)), where the polynomial u(n) = (2*n - 1)^2*(4*n^2 - 4*n + 9)/3 satisfies the difference equation 16*u(n) = (2*n - 1)*(u(n+1) - u(n-1)) and has its zeros on the vertical line Re(z) = 1/2 in the complex plane. Cf. A336266. - Peter Bala, Mar 25 2024
EXAMPLE
0.4908738521234051935097880286374223256558077186523602...
MAPLE
evalf(5*Pi/32, 140);
MATHEMATICA
RealDigits[5*Pi/32, 10, 100][[1]] (* Amiram Eldar, Jul 17 2020 *)
PROG
(PARI) 5*Pi/32 \\ Michel Marcus, Jul 17 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Jul 17 2020
STATUS
approved