OFFSET
0,1
COMMENTS
Area of one egg of the "double egg" whose polar equation is r(t) = a * cos(t)^2 and a Cartesian equation is (x^2+y^2)^3 = a^2*x^4 is equal to (3/16)*Pi * a^2. See the curve at the Mathcurve link.
REFERENCES
L. Lorentzen and H. Waadeland, Continued Fractions with Applications, North-Holland 1992, p. 586.
LINKS
Peter Bala, A note on A336266
Robert Ferréol, Double egg, Mathcurve.
FORMULA
Equals Integral_{t=0..Pi} (1/2) * cos(t)^4 * dt.
Equals Integral_{x=0..oo} 1/(x^2 + 1)^3 dx. - Amiram Eldar, Aug 13 2020
From Peter Bala, Mar 21 2024: (Start)
Equals 1/2 + Sum_{n >= 0} (-1)^n/(u(n)*u(-n)), where the polynomial u(n) = (2*n - 1)*(4*n^2 - 4*n + 3)/3 = A057813(n-1) has its zeros on the vertical line Re(z) = 1/2 in the complex plane. Cf. A336308.
Equals 1/2 + 1/(11 + 3/(12 + 15/(12 + 35/(12 + ... + (4*n^2 - 1)/(12 + ... ))))). See Lorentzen and Waadeland, p. 586, equation 4.7.10 with n = 2. (End)
EXAMPLE
0.58904862254808623221174563436490679078696926...
MAPLE
evalf(3*Pi/16, 140);
MATHEMATICA
RealDigits[3*Pi/16, 10, 100][[1]] (* Amiram Eldar, Jul 15 2020 *)
PROG
(PARI) 3*Pi/16 \\ Michel Marcus, Jul 15 2020
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bernard Schott, Jul 15 2020
STATUS
approved