[go: up one dir, main page]

login
A334634
Numbers m that divide 2^m + 11.
0
1, 13, 16043199041, 91118493923, 28047837698634913
OFFSET
1,2
COMMENTS
Equivalently, numbers m such that 2^m == -11 (mod m).
No other terms below 10^17.
CROSSREFS
Solutions to 2^n == k (mod n): A296370 (k=3/2), A187787 (k=1/2), A296369 (k=-1/2), A000079 (k=0), A006521 (k=-1), A015919 (k=2), A006517 (k=-2), A050259 (k=3), A015940 (k=-3), A015921 (k=4), A244673 (k=-4), A128121 (k=5), A245318 (k=-5), A128122 (k=6), A245728 (k=-6), A033981 (k=7), A240941 (k=-7), A015922 (k=8), A245319 (k=-8), A051447 (k=9), A240942 (k=-9), A128123 (k=10), A245594 (k=-10), A033982 (k=11), this sequence (k=-11), A128124 (k=12), A051446 (k=13), A128125 (k=14), A033983 (k=15), A015924 (k=16), A124974 (k=17), A128126 (k=18), A125000 (k=19), A015925 (k=2^5), A015926 (k=2^6), A015927 (k=2^7), A015929 (k=2^8), A015931 (k=2^9), A015932 (k=2^10), A015935 (k=2^11), A015937 (k=2^12).
Sequence in context: A081509 A177224 A145234 * A048847 A093671 A257137
KEYWORD
nonn,hard,more
AUTHOR
Max Alekseyev, Sep 10 2020
EXTENSIONS
a(5) from Sergey Paramonov, Oct 10 2021
STATUS
approved