[go: up one dir, main page]

login
A291877
Consider the graph with one central vertex connected to three outer vertices (a star graph). Then, a(n) is the minimum number of moves required to transfer a stack of n discs from the central vertex to an outer vertex, moving discs to adjacent vertices, following the rules of the Towers of Hanoi.
1
1, 4, 7, 14, 23, 32, 47, 68, 93, 120, 153, 198, 255, 318, 399, 480, 579, 700, 835, 1012, 1201, 1428
OFFSET
1,2
LINKS
Caroline Holz auf der Heide. Distances and automatic sequences in distinguished variants of Hanoi graphs. Dissertation. Fakultät für Mathematik, Informatik und Statistik. Ludwig-Maximilians-Universität München, 2016. [See Chapter 3.]
Paul K. Stockmeyer, Variations on the Four-Post Tower of Hanoi Puzzle, Congr. Numer., 102 (1994), pp. 3-12.
Eric Weisstein's World of Mathematics, Star Graph
CROSSREFS
Cf. A291876.
Sequence in context: A146678 A146417 A008370 * A048241 A003404 A139025
KEYWORD
nonn,hard,more
AUTHOR
Eric M. Schmidt, Sep 04 2017
EXTENSIONS
Clarified definition and a(16)-a(18) added by Borut Lužar, Dec 11 2017
a(19)-a(21) by Borut Lužar, Mar 07 2019
a(22) added by Ciril Petr, Jun 22 2021
STATUS
approved