OFFSET
1,6
COMMENTS
Terms begin from a(1)=0 because for zero the count is ambiguous.
From Amiram Eldar, Mar 10 2021: (Start)
The asymptotic density of the occurrences of k is (prime(k+1)-1)/A002110(k+1).
LINKS
FORMULA
EXAMPLE
For n=24, which is "400" in primorial base (as 24 = 4*(3*2*1) + 0*(2*1) + 0*1, see A049345), there are two trailing zeros, thus a(24) = 2.
MATHEMATICA
Table[If[# == 0, 0, j = #; While[! Divisible[n, Times @@ Prime@ Range@ j], j--]; j] &@ If[OddQ@ n, 0, k = 1; While[Times @@ Prime@ Range[k + 1] <= n, k++]; k], {n, 120}] (* or *)
nn = 120; b = MixedRadix[Reverse@ Prime@ Range@ PrimePi[nn + 1]]; Table[Length@ TakeWhile[Reverse@ IntegerDigits[n, b], # == 0 &], {n, nn}] (* Version 10.2, or *)
f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Length@ TakeWhile[Reverse@ f@ n, # == 0 &], {n, 120}] (* Michael De Vlieger, Aug 30 2016 *)
PROG
(Scheme)
(define (A276084 n) (let loop ((n n) (i 1)) (let* ((p (A000040 i)) (d (modulo n p))) (if (not (zero? d)) (- i 1) (loop (/ (- n d) p) (+ 1 i))))))
(Python)
from sympy import nextprime, primepi
def a053669(n):
p = 2
while True:
if n%p!=0: return p
else: p=nextprime(p)
def a(n): return primepi(a053669(n)) - 1 # Indranil Ghosh, May 12 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Aug 22 2016
STATUS
approved