[go: up one dir, main page]

login
A242053
Decimal expansion of 1/log(2)-1, the mean value of a random variable following the Gauss-Kuzmin distribution.
0
4, 4, 2, 6, 9, 5, 0, 4, 0, 8, 8, 8, 9, 6, 3, 4, 0, 7, 3, 5, 9, 9, 2, 4, 6, 8, 1, 0, 0, 1, 8, 9, 2, 1, 3, 7, 4, 2, 6, 6, 4, 5, 9, 5, 4, 1, 5, 2, 9, 8, 5, 9, 3, 4, 1, 3, 5, 4, 4, 9, 4, 0, 6, 9, 3, 1, 1, 0, 9, 2, 1, 9, 1, 8, 1, 1, 8, 5, 0, 7, 9, 8, 8, 5, 5, 2, 6, 6, 2, 2, 8, 9, 3, 5, 0, 6, 3, 4, 4
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.17 Gauss-Kuzmin-Wirsing constant, p. 151.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, 2.17 p. 21.
Michael Penn, This infinite series is crazy!, YouTube video, 2020.
FORMULA
Equals (1/log(2))*Integral_{x=0..1} x/(1+x) dx.
Equals Sum_{k>=1} 1/(2^k*(1 + 2^(2^(-k)))). - Amiram Eldar, May 28 2021
EXAMPLE
0.4426950408889634073599246810018921374266459541529859341354494...
MATHEMATICA
RealDigits[1/Log[2] - 1, 10, 99] // First
CROSSREFS
Cf. A007525.
Sequence in context: A273616 A064860 A091223 * A007525 A151966 A010778
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved