[go: up one dir, main page]

login
A230192
Decimal expansion of log(6^9*10^5)/25.
1
1, 1, 0, 5, 5, 5, 0, 4, 2, 7, 5, 2, 0, 9, 0, 8, 9, 3, 7, 0, 9, 6, 0, 9, 0, 1, 3, 9, 9, 5, 3, 9, 2, 5, 6, 5, 9, 7, 0, 0, 4, 9, 6, 9, 4, 6, 9, 1, 1, 6, 3, 6, 2, 8, 9, 3, 1, 4, 6, 0, 0, 3, 4, 3, 7, 2, 0, 6, 3, 4, 1, 7, 1, 4, 0, 3, 2, 5, 9, 8, 2, 1, 7, 3, 9, 8, 1, 1, 9, 1, 0, 4, 6, 9, 5, 7, 3, 9, 3, 9, 1, 4, 7, 1, 8
OFFSET
1,4
COMMENTS
The value is equal to 6/5*(log(2)/2 + log(3)/3 + log(5)/5 - log(30)/30) = (6/5)*A230191.
Pafnuty Chebyshev proved in 1852 that A*x/log(x) < pi(x) < B*x/log(x) holds for all x >= x(0) with some x(0) sufficiently large, where A = 5/6*B and B is the constant given above.
REFERENCES
Harold M. Edwards, Riemann's zeta function, Dover Publications, Inc., New York, 2001, pp. 281-284.
LINKS
P. L. Chebyshev, Mémoire sur les nombres premiers, Journal de Math. Pures et Appl. 17 (1852), 366-390.
EXAMPLE
1.105550427520908937096090139953925659700496946911636289314600343720634...
MATHEMATICA
RealDigits[Log[6^9 10^5]/25, 10, 120][[1]] (* Harvey P. Dale, Mar 14 2015 *)
PROG
(PARI) default(realprecision, 105); x=log(6^9*10^5)/25; for(n=1, 105, d=floor(x); x=(x-d)*10; print1(d, ", "));
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved