[go: up one dir, main page]

login
A196519
Decimal expansion of the number x satisfying x*e^x=6.
5
1, 4, 3, 2, 4, 0, 4, 7, 7, 5, 8, 9, 8, 3, 0, 0, 3, 1, 1, 2, 3, 4, 0, 7, 8, 0, 0, 7, 2, 1, 2, 0, 5, 8, 6, 9, 4, 7, 8, 6, 4, 3, 4, 6, 0, 8, 8, 0, 4, 3, 0, 2, 0, 2, 5, 6, 5, 5, 9, 4, 8, 4, 9, 6, 3, 4, 3, 3, 9, 9, 5, 9, 3, 2, 5, 9, 8, 3, 1, 1, 1, 6, 8, 5, 7, 6, 3, 8, 4, 2, 2, 2, 9, 9, 4, 4, 5, 6, 5, 1
OFFSET
1,2
EXAMPLE
1.43240477589830031123407800721205869478643460...
MATHEMATICA
Plot[{E^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
t = x /. FindRoot[E^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A030175 *)
t = x /. FindRoot[E^x == 2/x, {x, 0.5, 1}, WorkingPrecision -> 100]
RealDigits[t] (* A196515 *)
t = x /. FindRoot[E^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196516 *)
t = x /. FindRoot[E^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196517 *)
t = x /. FindRoot[E^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196518 *)
t = x /. FindRoot[E^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
RealDigits[t] (* A196519 *)
RealDigits[LambertW[6], 10, 50][[1]] (* G. C. Greubel, Nov 16 2017 *)
PROG
(PARI) lambertw(6) \\ G. C. Greubel, Nov 16 2017
CROSSREFS
Sequence in context: A001368 A197224 A340739 * A184338 A184412 A304240
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 03 2011
EXTENSIONS
Terms a(95) onward corrected by G. C. Greubel, Nov 16 2017
STATUS
approved