[go: up one dir, main page]

login
A191063
Primes that are not squares mod 19.
4
2, 3, 13, 29, 31, 37, 41, 53, 59, 67, 71, 79, 89, 97, 103, 107, 109, 113, 127, 151, 167, 173, 179, 181, 193, 211, 223, 227, 241, 257, 269, 281, 293, 307, 317, 331, 337, 373, 379, 383, 401, 409, 421, 431, 433, 439, 449, 487, 509, 521, 523, 547, 563, 569, 599
OFFSET
1,1
COMMENTS
Inert rational primes in the field Q(sqrt(-19)). - N. J. A. Sloane, Dec 25 2017 [Corrected by Jianing Song, Dec 24 2018]
Primes p such that p^9 == -1 (mod 19). Primes congruent to {2, 3, 8, 10, 12, 13, 14, 15, 18} modulo 19. - Jianing Song, Dec 24 2018
MATHEMATICA
Select[Prime[Range[200]], JacobiSymbol[#, 19]==-1&]
PROG
(Magma) [p: p in PrimesUpTo(599) | JacobiSymbol(p, 19) eq -1]; // Vincenzo Librandi, Sep 11 2012
(PARI) isok(p) = isprime(p) && !issquare(Mod(p, 19)); \\ Michel Marcus, Dec 25 2018
CROSSREFS
Sequence in context: A286458 A087906 A029737 * A105891 A228991 A141585
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 25 2011
STATUS
approved