OFFSET
1,1
COMMENTS
Inert rational primes in the field Q(sqrt(-6)). - N. J. A. Sloane, Dec 26 2017
Appears to be the primes p such that (p mod 6)*(Fibonacci(p) mod 6) = 5. - Gary Detlefs, May 26 2014
Originally erroneously named "Primes that are not squares mod 6". - M. F. Hasler, Jan 18 2016
From Jianing Song, Oct 23 2024: (Start)
Primes p such that the Legendre symbol (-6/p) = -1, i.e., -6 is not a square modulo p.
Primes congruent to {13, 17, 19, 23} module 24. (End)
LINKS
MATHEMATICA
Select[Prime[Range[200]], JacobiSymbol[#, 6]==-1&]
PROG
(Magma) [p: p in PrimesUpTo(593) | KroneckerSymbol(p, 6) eq -1]; // Vincenzo Librandi, Sep 11 2012
(PARI) is(n)=isprime(n) && kronecker(n, 6)<0 \\ Charles R Greathouse IV, Feb 23 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 25 2011
EXTENSIONS
Definition corrected, following a suggestion from David Broadhurst, by M. F. Hasler, Jan 18 2016
STATUS
approved