[go: up one dir, main page]

login
A189988
Numbers with prime factorization p^2*q^4.
10
144, 324, 400, 784, 1936, 2025, 2500, 2704, 3969, 4624, 5625, 5776, 8464, 9604, 9801, 13456, 13689, 15376, 21609, 21904, 23409, 26896, 29241, 29584, 30625, 35344, 42849, 44944, 55696, 58564, 59536, 60025, 68121, 71824, 75625, 77841
OFFSET
1,1
COMMENTS
Numbers k such that tau(k^2)/tau(k) = 3 where tau(n) is the number of divisors of n (A000005). - Michel Marcus, Feb 09 2018
FORMULA
Sum_{n>=1} 1/a(n) = P(2)*P(4) - P(6) = A085548 * A085964 - A085966 = 0.017749..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
a(n)= A054753(n)^2. - R. J. Mathar, May 05 2023
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 4}; Select[Range[150000], f]
Module[{upto=80000}, Select[Union[Flatten[{#[[1]]^2 #[[2]]^4, #[[1]]^4 #[[2]]^2}&/@ Subsets[Prime[Range[Sqrt[upto/16]]], {2}]]], #<=upto&]] (* Harvey P. Dale, Dec 15 2017 *)
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\4)^(1/4), t=p^4; forprime(q=2, sqrt(lim\t), if(p==q, next); listput(v, t*q^2))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved