[go: up one dir, main page]

login
A141009
E.g.f. exp(Sum_{d|M} (exp(d*x)-1)/d), M=13.
2
1, 2, 18, 262, 4498, 88174, 1989162, 51366438, 1491069602, 47749828830, 1664928894170, 62693869629142, 2534737217687378, 109469680507411214, 5025930552213949450, 244236790780300327302, 12515419830686362586882
OFFSET
0,2
COMMENTS
Also the number of partitions of {1..(13n)} that are invariant under a permutation consisting of n 13-cycles. - Danny Rorabaugh, Oct 29 2015
LINKS
T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]
OEIS Wiki, Sorting numbers
MATHEMATICA
u[0, j_]: = 1; u[k_, j_]: = u[k, j] = Sum[Binomial[k-1, i-1]Plus@@(u[k-i, j]#^(i-1)&/@Divisors[j]), {i, k}]; Table[u[n, 13], {n, 0, 30}] (* Vincenzo Librandi, Dec 12 2012, after Wouter Meeussen in similar sequences *)
mx = 16; p = 13; Range[0, mx]! CoefficientList[ Series[ Exp[ (Exp[p*x] - p - 1)/p + Exp[x]], {x, 0, mx}], x] (* Robert G. Wilson v, Dec 12 2012 *)
CROSSREFS
Column 13 of A162663.
Sequence in context: A360974 A350461 A099880 * A143154 A032037 A351276
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 11 2008
STATUS
approved