OFFSET
1,2
COMMENTS
The proof by R. P. Stanley using contradiction and the Gelfond-Schneider Theorem shows that this number is transcendental.
Let r be this constant and f(x) be the function x^(1/(r-1)). Since r^(r-1) = 1 + 1/r, we have r = f(1 + 1/f(1 + 1/f(1 + 1/f(1 + ...)))). - Gerald McGarvey, Jan 12 2008
LINKS
R. P. Stanley, A transcendental number?: Quickie 88-10, Mathematical Entertainments column (Steven H. Weintraub editor), The Mathematical Intelligencer, Vol. 11, No. 1, Winter 1989, p. 55.
EXAMPLE
1.77677504009705469747973074403...
MATHEMATICA
RealDigits[x/.FindRoot[x^x==x+1, {x, 1.8}, WorkingPrecision->120]][[1]] (* Harvey P. Dale, Aug 19 2019 *)
PROG
(PARI) solve(x=1, 2, x^x-x-1)
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Rick L. Shepherd, Nov 12 2006
STATUS
approved