[go: up one dir, main page]

login
A112564
Square array, read by ascending antidiagonals, where each row is a generalized Flavius Josephus sieve (A000960).
9
1, 1, 1, 1, 2, 1, 1, 3, 4, 1, 1, 4, 7, 6, 1, 1, 5, 13, 13, 10, 1, 1, 6, 21, 28, 19, 12, 1, 1, 7, 31, 61, 61, 27, 18, 1, 1, 8, 43, 96, 125, 88, 39, 22, 1, 1, 9, 57, 169, 241, 261, 133, 49, 30, 1, 1, 10, 73, 232, 505, 546, 421, 208, 63, 34, 1, 1, 11, 91, 361, 785, 1051, 1171, 605, 313
OFFSET
0,5
EXAMPLE
Table begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 6, 10, 12, 18, 22, 30, 34, ...
1, 3, 7, 13, 19, 27, 39, 49, 63, 79, ...
1, 4, 13, 28, 61, 88, 133, 208, 313, 364, ...
1, 5, 21, 61, 125, 261, 421, 605, 1101, 1681, ...
1, 6, 31, 96, 241, 546, 1171, 1776, 2761, 5046, ...
1, 7, 43, 169, 505, 1051, 2527, 5083, 7729, 11635, ...
1, 8, 57, 232, 785, 1800, 5041, 11096, 22737, 34504, ...
1, 9, 73, 361, 1153, 3961, 8281, 20161, 43633, 95049, ...
1, 10, 91, 460, 1981, 5950, 13951, 38080, 91081, 186130, ...
...
PROG
(PARI) {T(n, k)=local(A=k, B=0, C=0); if(n==0||k==0, 1, until(A==B, C=C+1; if(C%n==0, C=C+1); B=A; A=floor(A*(C+1)/C)); 1+A)}
CROSSREFS
Cf. A002491 (row 1), A000960 (row 2), A112560 (row 3), A112561 (row 4), A112562 (row 5), A112563 (row 6), A112565 (main diagonal), A112568 (2nd diagonal), A112569 (antidiagonal sums).
Sequence in context: A179743 A113749 A109225 * A244911 A258309 A197957
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Oct 14 2005
STATUS
approved