[go: up one dir, main page]

login
A107196
Primes of the form 4x^2 + 21y^2.
1
37, 193, 277, 421, 541, 673, 1009, 1033, 1093, 1129, 1201, 1213, 1429, 1549, 1621, 1789, 1801, 2053, 2137, 2377, 2473, 2521, 2557, 2689, 2797, 2857, 3217, 3229, 3301, 3529, 3613, 3637, 3697, 3733, 3889, 4201, 4621, 4657, 4729, 4789, 4813
OFFSET
1,1
COMMENTS
Discriminant = -336. See A107132 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
QuadPrimes2[4, 0, 21, 10000] (* see A106856 *)
PROG
(PARI) list(lim)=my(v=List(), w, t); for(x=1, sqrtint(lim\4), w=4*x^2; for(y=1, sqrtint((lim-w)\21), if(isprime(t=w+21*y^2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Sequence in context: A137724 A172080 A142181 * A140027 A109320 A221571
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved