[go: up one dir, main page]

login
A107173
Primes of the form 3x^2 + 22y^2.
1
3, 97, 163, 331, 379, 499, 577, 859, 1153, 1171, 1321, 1483, 1609, 1753, 1873, 2083, 2137, 2161, 2203, 2347, 2539, 2689, 2707, 2731, 2953, 2971, 3067, 3169, 3433, 3529, 3697, 3793, 3931, 4027, 4129, 4339, 4651, 4657, 4723, 4801, 4987, 5113
OFFSET
1,1
COMMENTS
Discriminant = -264. See A107132 for more information.
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
QuadPrimes2[3, 0, 22, 10000] (* see A106856 *)
PROG
(PARI) list(lim)=my(v=List(), w, t); for(x=1, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\22), if(isprime(t=w+22*y^2), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Feb 10 2017
CROSSREFS
Sequence in context: A268012 A268181 A030262 * A100494 A209554 A320513
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved