[go: up one dir, main page]

login
A104189
Prime numbers arising from Schorn's proof that there are infinitely many primes.
0
2, 3, 5, 7, 13, 19, 73, 97, 241, 601, 2161, 15121, 20161, 30241, 35281, 161281, 241921, 282241, 1088641, 1451521, 2177281, 2903041, 10886401, 18144001, 29030401, 32659201, 39916801, 199584001, 319334401, 958003201, 2395008001, 2874009601
OFFSET
1,1
REFERENCES
Paolo Ribenboim, "The New Book of Prime Number Records", 1996, ISBN 0-387-94457-5 Page 5
LINKS
R. Mestrovic, Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof, arXiv preprint arXiv:1202.3670 [math.HO], 2012-2018. - From N. J. A. Sloane, Jun 13 2012
Peter Schorn, Schorn's Proof
www.mathematic.de, Schorn's proof
FORMULA
n!*i+1, where 1 <= i <= n and n!*i+1 is a prime.
EXAMPLE
6!*3+1 = 2161 is prime and is a term.
MATHEMATICA
lst={}; Do[lst=Join[lst, Select[n!Range[n]+1, PrimeQ]], {n, 12}]; lst (* T. D. Noe, Nov 02 2006 *)
CROSSREFS
Sequence in context: A147485 A341650 A341640 * A301776 A178570 A294443
KEYWORD
nonn
AUTHOR
Karsten Meyer, Mar 12 2005; extended Jun 08 2005
EXTENSIONS
Corrected by T. D. Noe, Nov 02 2006
STATUS
approved