OFFSET
0,1
COMMENTS
Gelfond showed abs( sup{ x in R} sum(0<=n<N, (-1)^t(n)*exp(i*x*n) ) <=C*N^(log(3)/log(4)) where t(n) is the Thue-Morse sequence and the exponent log(3)/log(4) is optimal.
REFERENCES
J.-P. Allouche & J. Shallit, Automatic sequences, Cambridge University Press, 2003, p 122
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
FORMULA
Equals Integral_{x=1..oo} 1/(2^x - 2^(-x)) dx. - Amiram Eldar, Jul 16 2020
EXAMPLE
0.79248125036057...
MATHEMATICA
RealDigits[Log[4, 3], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)
PROG
(PARI) log(3)/log(4) \\ Charles R Greathouse IV, May 09 2016
CROSSREFS
Cf. A010060.
Cf. decimal expansion of log_4(m): this sequence, A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Jun 08 2004
STATUS
approved