[go: up one dir, main page]

login
A091110
Number of editing steps (deletion, insertion, or substitution) to transform the binary representation of n into the ternary representation of n.
1
0, 2, 1, 2, 2, 2, 2, 4, 1, 1, 2, 1, 1, 2, 3, 4, 4, 3, 3, 4, 3, 3, 4, 4, 4, 5, 3, 3, 3, 2, 2, 4, 3, 3, 4, 2, 2, 4, 3, 4, 4, 3, 3, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 4, 5, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 5, 5, 6, 5, 5, 6, 6, 6, 7, 2, 2, 3, 2, 2, 3, 4, 4, 4, 2, 2, 3, 2, 2, 3, 4, 4, 5, 4, 4, 4, 3
OFFSET
1,2
COMMENTS
a(A091111(n))=n and a(m)>n for m>A091111(n).
LINKS
Michael Gilleland, Levenshtein Distance [It has been suggested that this algorithm gives incorrect results sometimes. - N. J. A. Sloane]
Eric Weisstein's World of Mathematics, Binary
Eric Weisstein's World of Mathematics, Ternary
FORMULA
a(n) = LevenshteinDistance(A007088(n), A007088(n)).
CROSSREFS
Sequence in context: A226942 A030371 A029550 * A339660 A104659 A077197
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 20 2003
STATUS
approved