OFFSET
0,3
COMMENTS
Equals row sums of triangle A145463. - Gary W. Adamson, Oct 11 2008
a(n) is the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {1>2, 1>3, 1>4, 1>5} of length 5. That is, the number of length n+1 permutations having no subsequences of length 5 in which the first element is the largest. - Sergey Kitaev, Dec 11 2020
a(n) is the number of permutations p[1]..p[n] of {1,...,n} with p[j+1] < p[j]+4 for 0 < j < n. - Don Knuth, Apr 25 2022
REFERENCES
B. Polster, The Mathematics of Juggling, Springer-Verlag, 2003, p. 48.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..1662
Fan Chung and R. L. Graham, Primitive juggling sequences, Amer. Math. Monthly 115(3) (2008), 185-19.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
Kai Ting Keshia Yap, David Wehlau, and Imed Zaguia, Permutations Avoiding Certain Partially-ordered Patterns, arXiv:2101.12061 [math.CO], 2021.
Index entries for linear recurrences with constant coefficients, signature (4).
FORMULA
a(n) = n! for n <= 4, a(n) = 6*4^(n-3) = A002023(n-3) for n >= 3.
G.f.: 1 + x*(1 - 2*x - 2*x^2)/(1 - 4*x). - Philippe Deléham, Aug 16 2005
MATHEMATICA
LinearRecurrence[{4}, {1, 2, 6}, 30] (* Harvey P. Dale, Aug 23 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Jun 02 2003
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 11 2020
STATUS
approved