[go: up one dir, main page]

login
A080724
a(0) = 2; for n>0, a(n) is taken to be the smallest positive integer greater than a(n-1) which is consistent with the condition "n is a member of the sequence if and only if a(n) == 1 mod 3".
0
2, 3, 4, 7, 10, 11, 12, 13, 14, 15, 16, 19, 22, 25, 28, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119
OFFSET
0,1
REFERENCES
Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585
LINKS
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence (math.NT/0305308)
FORMULA
a(a(n)) = 3*n+4, n >= 0.
PROG
(PARI) {a=2; m=[2]; for(n=1, 66, print1(a, ", "); a=a+1; if(a%3==1&&a==n, qwqw=qwqw, if(m==[], while(a%3!=1&&a==n, a++), if(m[1]==n, while(a%3!=1, a++); m=if(length(m) == 1, [], vecextract(m, "2..")), if(a%3==1, a++))); m=concat(m, a)))}
CROSSREFS
Cf. A079000, A080720, ...
Sequence in context: A182832 A375723 A082673 * A342780 A089589 A047546
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 08 2003
EXTENSIONS
More terms and PARI code from Klaus Brockhaus, Mar 08 2003
STATUS
approved