[go: up one dir, main page]

login
A080722
a(0) = 0; for n > 0, a(n) is taken to be the smallest positive integer greater than a(n-1) which is consistent with the condition "n is a term of the sequence if and only if a(n) == 1 (mod 3)".
0
0, 1, 3, 4, 7, 8, 9, 10, 13, 16, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121
OFFSET
0,3
LINKS
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
Hsien-Kuei Hwang, Svante Janson, Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms 13:4 (2017), #47.
FORMULA
a(a(n)) = 3*n-2, n >= 2.
PROG
(PARI) {a=0; m=[]; for(n=1, 70, print1(a, ", "); a=a+1; if(a%3==1&&a==n, qwqw=qwqw, if(m==[], while(a%3!=1&&a==n, a++), if(m[1]==n, while(a%3!=1, a++); m=if(length(m)==1, [], vecextract(m, "2..")), if(a%3==1, a++))); m=concat(m, a)))} \\ Klaus Brockhaus, Mar 08 2003
CROSSREFS
Sequence in context: A057811 A284489 A026343 * A092754 A061094 A100991
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 08 2003
EXTENSIONS
More terms from Klaus Brockhaus, Mar 08 2003
STATUS
approved