OFFSET
1,2
COMMENTS
M. Kaneko has shown that the Riemann hypothesis is equivalent to the assertion that a(n) > 0 for n > 60.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543.
MATHEMATICA
f[n_] := Floor[Exp[HarmonicNumber[n]]Log[HarmonicNumber[n]]] - DivisorSigma[1, n]; Array[f, 70] (* Robert G. Wilson v, Dec 17 2016 *)
PROG
(PARI) {h(n) = sum(k=1, n, 1/k)};
vector(80, n, floor( exp(h(n))*log(h(n))) - sigma(n, 1) ) \\ G. C. Greubel, Jan 15 2019
(Magma) [Floor(Exp(HarmonicNumber(n))*Log(HarmonicNumber(n))) - DivisorSigma(1, n): n in [1..80]]; // G. C. Greubel, Jan 15 2019
(Sage) [floor(exp(harmonic_number(n))*log(harmonic_number(n))) - sigma(n, 1) for n in (1..80)] # G. C. Greubel, Jan 15 2019
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jan 22 2003
STATUS
approved