[go: up one dir, main page]

login
A072635
Inverse permutation to A072634.
6
0, 1, 3, 2, 6, 8, 7, 19, 16, 5, 15, 4, 14, 52, 43, 51, 42, 20, 22, 53, 60, 21, 61, 56, 179, 155, 178, 154, 177, 164, 557, 163, 556, 11, 39, 13, 41, 151, 123, 153, 125, 12, 40, 33, 117, 152, 124, 471, 381, 477, 553, 479, 555, 505, 1797, 507, 1799, 478, 554, 1536
OFFSET
0,3
PROG
(Scheme functions below show the essential idea. For a complete source, follow the "Gatomorphisms" link.)
(define A072635 (arithrank->lexrank-bijection A059905 A059906))
(define (arithrank->lexrank-bijection pr1 pr2) (lambda (n) (CatalanRankGlobal (parenthesization->binexp (unrank-bintree n pr1 pr2)))))
(define (unrank-bintree rank pr1 pr2) (cond ((zero? rank) (list)) (else (cons (unrank-bintree (pr1 (-1+ rank)) pr1 pr2) (unrank-bintree (pr2 (-1+ rank)) pr1 pr2)))))
(define (A059905 n) (if (zero? n) n (+ (modulo n 2) (* 2 (A059905 (floor->exact (/ n 4)))))))
(define (A059906 n) (A059905 (floor->exact (/ n 2))))
CROSSREFS
A072644 gives the size of the corresponding parenthesizations, i.e. A072644(n) = A029837(A014486(A072635(n))+1)/2 [A029837(n+1) gives the binary width of n].
Sequence in context: A131161 A131006 A122362 * A318049 A352877 A210754
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2002
STATUS
approved