[go: up one dir, main page]

login
A072026
Swap twin prime pairs >(3,5) in prime factorization of n.
6
1, 2, 3, 4, 7, 6, 5, 8, 9, 14, 13, 12, 11, 10, 21, 16, 19, 18, 17, 28, 15, 26, 23, 24, 49, 22, 27, 20, 31, 42, 29, 32, 39, 38, 35, 36, 37, 34, 33, 56, 43, 30, 41, 52, 63, 46, 47, 48, 25, 98, 57, 44, 53, 54, 91, 40, 51, 62, 61, 84, 59, 58, 45, 64, 77, 78
OFFSET
1,2
FORMULA
a(a(n)) = n, a self-inverse permutation of natural numbers.
a(n) = n for single primes (A007510) and products of twin prime pairs (A037074).
Multiplicative with a(p) = (if p<=3 then p else (if p+2 is prime then p+2 else (if p-2 is prime then p-2 else p))), p prime.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p, q primes > 3, p = q+2} ((p^2-p)*(q^2-q)/((p^2-q)*(q^2-p))) = 0.53439004468579249988... . - Amiram Eldar, Dec 24 2022
EXAMPLE
a(143)=a(11*13)=a(11)*a(13)=13*11=143; a(77)=a(7*11)=a(7)*a(11)=5*13=65.
MATHEMATICA
a[n_] := Product[{p, e} = pe; If[p <= 3, p, If[PrimeQ[p+2], p+2, If[PrimeQ[p-2], p-2, p]]]^e, {pe, FactorInteger[n]}];
Array[a, 100] (* Jean-François Alcover, Nov 20 2021 *)
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Jun 07 2002
STATUS
approved