[go: up one dir, main page]

login
A068465
Decimal expansion of Gamma(3/4).
28
1, 2, 2, 5, 4, 1, 6, 7, 0, 2, 4, 6, 5, 1, 7, 7, 6, 4, 5, 1, 2, 9, 0, 9, 8, 3, 0, 3, 3, 6, 2, 8, 9, 0, 5, 2, 6, 8, 5, 1, 2, 3, 9, 2, 4, 8, 1, 0, 8, 0, 7, 0, 6, 1, 1, 2, 3, 0, 1, 1, 8, 9, 3, 8, 2, 8, 9, 8, 2, 2, 8, 8, 8, 4, 2, 6, 7, 9, 8, 3, 5, 7, 2, 3, 7, 1, 7, 2, 3, 7, 6, 2, 1, 4, 9, 1, 5, 0, 6, 6, 5, 8, 2, 1, 7
OFFSET
1,2
FORMULA
This number * A068466 = sqrt(2)*Pi = A063448. - R. J. Mathar, Jun 18 2006
Equals Integral_{x>=0} x^(-1/4)*exp(-x) dx. - Vaclav Kotesovec, Nov 12 2020
Equals (Pi/2)^(1/4) * sqrt(AGM(1,sqrt(2))) = sqrt(A069998 * A053004). - Amiram Eldar, Jun 12 2021
EXAMPLE
Gamma(3/4) = 1.225416702465177645129098303362890526851239248108070611...
MAPLE
evalf(GAMMA(3/4)) ; # R. J. Mathar, Jan 10 2013
MATHEMATICA
RealDigits[Gamma[3/4], 10, 100][[1]] (* G. C. Greubel, Mar 11 2018 *)
PROG
(PARI) default(realprecision, 100); gamma(3/4) \\ G. C. Greubel, Mar 11 2018
(Magma) SetDefaultRealField(RealField(105)); Gamma(3/4); // G. C. Greubel, Mar 11 2018
CROSSREFS
KEYWORD
cons,easy,nonn
AUTHOR
Benoit Cloitre, Mar 10 2002
STATUS
approved