OFFSET
1,2
LINKS
Joe Buhler and R. L. Graham, Juggling Drops and Descents, Amer. Math. Monthly, 101, (no. 6) 1994, 507 - 519.
FORMULA
a(2n+1) = 4n+1, a(4n+2) = 4n+3, a(4n+4) = 2n+2. - Ralf Stephan, Jun 10 2005
Empirical g.f.: x*(3*x^6+x^5+7*x^4+2*x^3+5*x^2+3*x+1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Feb 18 2013
From Luce ETIENNE, Nov 11 2016: (Start)
a(n) = (11*n-2-(5*n-6)*(-1)^n-(n+2)*((-1)^((2*n+1-(-1)^n)/4)+(-1)^((2*n-1+(-1)^n)/4)))/8.
a(n) = (11*n-2-(5*n-6)*cos(n*Pi)-2*(n+2)*cos(n*Pi/2))/8.
a(n) = (11*n-2-(5*n-6)*(-1)^n-(n+2)*(1+(-1)^n)*i^n)/8 where i = sqrt(-1). (End)
MAPLE
[seq(Z2N(InfRisingSSInv(N2Z(n))), n=1..120)]; InfRisingSSInv := z -> `if`((z > 0), `if`((0 = (z mod 2)), z/2, -z), 2*z);
N2Z := n -> ((-1)^n)*floor(n/2); Z2N := z -> 2*abs(z)+`if`((z < 1), 1, 0);
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 19 2001
STATUS
approved