[go: up one dir, main page]

login
A065170
Permutation t->t-3 of Z, folded to N.
2
7, 5, 9, 3, 11, 1, 13, 2, 15, 4, 17, 6, 19, 8, 21, 10, 23, 12, 25, 14, 27, 16, 29, 18, 31, 20, 33, 22, 35, 24, 37, 26, 39, 28, 41, 30, 43, 32, 45, 34, 47, 36, 49, 38, 51, 40, 53, 42, 55, 44, 57, 46, 59, 48, 61, 50, 63, 52, 65, 54, 67, 56, 69, 58, 71, 60, 73, 62, 75, 64, 77, 66
OFFSET
1,1
COMMENTS
This permutation consists of just three cycles, which are infinite.
LINKS
FORMULA
Let f: Z -> N be given by f(z) = 2z if z>0 else 2|z|+1, with inverse g(z) = z/2 if z even else (1-z)/2. Then a(n) = f(g(n)-3).
G.f.: x*(x^8-x^7+4*x^6-4*x^5+4*x^4-4*x^3-3*x^2-2*x+7) / ((x-1)^2*(x+1)). - Colin Barker, Feb 18 2013
a(n) = -6*(-1)^n+n for n>6. a(n) = a(n-1)+a(n-2)-a(n-3) for n>9. - Colin Barker, Mar 07 2014
Sum_{n>=1} (-1)^n/a(n) = 46/15 - log(2). - Amiram Eldar, Aug 08 2023
MATHEMATICA
CoefficientList[Series[(x^8 - x^7 + 4 x^6 - 4 x^5 + 4 x^4 - 4 x^3 - 3 x^2 - 2 x + 7)/((x - 1)^2 (x + 1)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 08 2014 *)
LinearRecurrence[{1, 1, -1}, {7, 5, 9, 3, 11, 1, 13, 2, 15}, 80] (* Harvey P. Dale, Oct 19 2018 *)
PROG
(PARI) Vec(x*(x^8-x^7+4*x^6-4*x^5+4*x^4-4*x^3-3*x^2-2*x+7)/((x-1)^2*(x+1)) + O(x^100)) \\ Colin Barker, Mar 07 2014
CROSSREFS
Inverse permutation to A065166.
Sequence in context: A339529 A195493 A195399 * A346589 A113816 A358186
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, Oct 19 2001
STATUS
approved