[go: up one dir, main page]

login
A057502
Permutation of natural numbers: rotations of non-crossing handshakes encoded by A014486 (to opposite direction of A057501).
30
0, 1, 3, 2, 7, 6, 8, 4, 5, 17, 16, 18, 14, 15, 20, 19, 21, 9, 10, 22, 11, 12, 13, 45, 44, 46, 42, 43, 48, 47, 49, 37, 38, 50, 39, 40, 41, 54, 53, 55, 51, 52, 57, 56, 58, 23, 24, 59, 25, 26, 27, 61, 60, 62, 28, 29, 63, 30, 31, 32, 64, 33, 34, 35, 36, 129, 128, 130, 126, 127
OFFSET
0,3
COMMENTS
In A057501 and A057502, the cycles between (A014138(n-1)+1)-th and (A014138(n))-th term partition A000108(n) objects encoded by the corresponding terms of A014486 into A002995(n+1) equivalence classes of planar trees, thus the latter sequence can be produced also with Maple procedure RotHandshakesPermutationCycleCounts given below.
LINKS
A. Karttunen, Gatomorphisms (Includes the complete Scheme program for computing this sequence)
MAPLE
map(CatalanRankGlobal, map(RotateHandshakesR, A014486));
RotateHandshakesR := n -> pars2binexp(deepreverse(RotateHandshakesP(deepreverse(binexp2pars(n)))));
deepreverse := proc(a) if 0 = nops(a) or list <> whattype(a) then (a) else [op(deepreverse(cdr(a))), deepreverse(a[1])]; fi; end;
with(group); CountCycles := b -> (nops(convert(b, 'disjcyc')) + (nops(b)-convert(map(nops, convert(b, 'disjcyc')), `+`)));
RotHandshakesPermutationCycleCounts := proc(upto_n) local u, n, a, r, b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n, n)/(n+1)); for r from 0 to u-1 do b := [op(b), 1+CatalanRank(n, RotateHandshakes(CatalanUnrank(n, r)))]; od; a := [op(a), CountCycles(b)]; od; RETURN(a); end;
# For other procedures, follow A057501.
PROG
(Scheme function implementing this automorphism on list-structures:) (define (RotateHandshakesInv! s) (cond ((not (pair? s))) ((not (pair? (cdr s))) (swap! s)) (else (RotateHandshakesInv! (cdr s)) (robl! s))) s)
(define (robl! s) (let ((ex-car (car s))) (set-car! s (cddr s)) (set-cdr! (cdr s) ex-car) (swap! (cdr s)) (swap! s) s))
(define (swap! s) (let ((ex-car (car s))) (set-car! s (cdr s)) (set-cdr! s ex-car) s))
CROSSREFS
Inverse of A057501 and the car/cdr-flipped conjugate of A069774, i.e. A057502(n) = A057163(A069774(A057163(n))). Cf. also A057507, A057510, A057513, A069771, A069772.
Sequence in context: A080398 A126851 A082321 * A071656 A130963 A130930
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 03 2000
STATUS
approved