[go: up one dir, main page]

login
A057432
Obtained by reading first the numerator then the denominator of fractions in left-hand half of Stern-Brocot tree (A007305/A007306).
3
1, 1, 1, 2, 1, 3, 2, 3, 1, 4, 2, 5, 3, 5, 3, 4, 1, 5, 2, 7, 3, 8, 3, 7, 4, 7, 5, 8, 5, 7, 4, 5, 1, 6, 2, 9, 3, 11, 3, 10, 4, 11, 5, 13, 5, 12, 4, 9, 5, 9, 7, 12, 8, 13, 7, 11, 7, 10, 8, 11, 7, 9, 5, 6, 1, 7, 2, 11, 3, 14, 3, 13, 4, 15, 5, 18, 5, 17, 4, 13, 5, 14, 7, 19, 8, 21, 7, 18, 7, 17, 8, 19, 7
OFFSET
0,4
EXAMPLE
The tree begins:
1/1
1/2
1/3 2/3
1/4 2/5 3/5 3/4
1/5 2/7 3/8 3/7 4/7 5/8 5/7 4/5
1/6 2/9 3/11 3/10 4/11 5/13 5/12 4/9 5/9 7/12 8/13 7/11 7/10 8/11 7/9 5/6
MATHEMATICA
Contribution from Peter Luschny, Apr 27 2009: (Start)
sbt[n_]:=Module[{P, L, Y}, P={{1, 0}, {1, 1}}; L={{1, 1}, {0, 1}}; Y={{1, 0}, {0, 1}}; w[b_]:=Fold[ #1.If[ #2==0, L, P]&, Y, b]; u[a_]:={a[[2, 1]]+a[[2, 2]], a[[1, 1]]+a[[1, 2]]}; s[l_]:={l, {Last[l], First[l]}}; Map[s, Map[u, Map[w, Part[Partition[Tuples[{0, 1}, n], 2^(n-1)], 1]]]]]
Flatten[Append[{1, 1}, Table[Map[First, sbt[i]], {i, 1, 5}]]] (End)
CROSSREFS
Related to the Kepler tree A294442 via row permutations given by A088208 or A131271.
Sequence in context: A057940 A097285 A372917 * A374741 A361942 A302295
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 08 2000
EXTENSIONS
More terms from Alford Arnold, Sep 11 2000
More terms from Joshua Zucker, May 11 2006
STATUS
approved