OFFSET
0,3
COMMENTS
This is a permutation of natural numbers induced when Euler's triangulation of convex polygons, encoded by the sequence A014486 in a straightforward way (via binary trees, cf. the illustration of the rotation of a triangulated pentagon, given in the Links section) are rotated clockwise.
In A057161 and A057162, the cycles between A014138(n-1)-th and A014138(n)-th term partition A000108(n) objects encoded by the corresponding terms of A014486 into A001683(n+2) equivalence classes of flexagons (or unlabeled plane boron trees), thus the latter sequence can be counted with the Maple procedure A057162_CycleCounts given below. Cf. also the comments in A057161.
LINKS
A. Karttunen, Table of n, a(n) for n = 0..2055
A. Karttunen, Introductory Survey of Catalan Automorphisms and Bijections (an unfinished draft), pp. 51-54.
FORMULA
MAPLE
a(n) = CatalanRankGlobal(RotateTriangularizationR(A014486[n]))
RotateTriangularizationR := n -> ReflectBinTree(RotateTriangularization(ReflectBinTree(n)));
with(group); A057162_CycleCounts := proc(upto_n) local u, n, a, r, b; a := []; for n from 0 to upto_n do b := []; u := (binomial(2*n, n)/(n+1)); for r from 0 to u-1 do b := [op(b), 1+CatalanRank(n, RotateTriangularization(CatalanUnrank(n, r)))]; od; a := [op(a), (`if`((n < 2), 1, nops(convert(b, 'disjcyc'))))]; od; RETURN(a); end;
# See also the code in A057161.
PROG
(Scheme functions implementing this automorphism on S-expressions, three different variants):
(define (*A057162 bt) (let loop ((lt bt) (nt (list))) (cond ((not (pair? lt)) nt) (else (loop (cdr lt) (cons nt (car lt)))))))
CROSSREFS
Inverse: A057161.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2000; entry revised Jun 06 2014
STATUS
approved