OFFSET
0,4
COMMENTS
Let J(h)=E_8*E_{4,1}+(2h-60)*phi_{12,1} be the Jacobi form of weight 12 and index 1 associated with a norm 2 vector of a Niemeier lattice of Coxeter number h. Let J(h)=sum_{n,r} c(4n-r^2) q^n*z^r. So a(n)=c(4m-r^2) for h=0.
Let N(h,n) be the number of vectors of norm 2n for the lattice, then we have N(h,n)=c(4n)+2*sum_{1<=r<=sqrt(4n)}c(4n-r^2) if h is the Coxeter number of a Niemeier lattice. Note that N(0,n)=a(4n)-2*sum a(4n-r^2)=A008408(n), for the Leech lattice! Note also a(3)<0 and a(n) is nonnegative for n<=1000, except 3.
REFERENCES
Eichler and Zagier, The Theory of Jacobi Forms, Birkhauser, 1985.
FORMULA
E_8*E_{4, 1}-60*phi_{12, 1}. The E's are Eisenstein-Jacobi series and phi_{12, 1} is the unique normalized Jacobi cusp form of weight 12 and index 1.
CROSSREFS
KEYWORD
sign
AUTHOR
Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jul 16 2000
STATUS
approved