[go: up one dir, main page]

login
A051904
Minimal exponent in prime factorization of n.
67
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1
OFFSET
1,4
COMMENTS
The asymptotic mean of this sequence is 1 (Niven, 1969). - Amiram Eldar, Jul 10 2020
Let k = A007947(n), then for n > 1 k^a(n) is the greatest power of k which divides n; see example. - David James Sycamore, Sep 07 2023
LINKS
Cao Hui-Zhong, The Asymptotic Formulas Related to Exponents in Factoring Integers, Math. Balkanica, Vol. 5 (1991), Fasc. 2.
Ivan Niven, Averages of Exponents in Factoring Integers, Proc. Amer. Math. Soc., Vol. 22, No. 2 (1969), pp. 356-360.
Eric Weisstein's World of Mathematics, Niven's Constant
FORMULA
a(n) = min_{k=1..A001221(n)} A124010(n,k). - Reinhard Zumkeller, Aug 27 2011
a(1) = 0, for n > 1, if A001221(n) = 1 (when n is in A000961), a(n) = A001222(n), otherwise a(n) = min(A067029(n), a(A028234(n))). - Antti Karttunen, Jul 12 2017
EXAMPLE
For n = 72 = 2^3*3^2, a(72) = min(exponents) = min(3,2) = 2.
For n = 72, using alternative definition: rad(72) = 6; and 6^2 = 36 divides 72 but no higher power of 6 divides 72, so a(72) = 2.
For n = 432, rad(432) = 6 and 6^3 = 216 divides 432 but no higher power of 6 divides 432, therefore a(432) = 3. - David James Sycamore, Sep 08 2023
MAPLE
a := proc (n) if n = 1 then 0 else min(seq(op(2, op(j, op(2, ifactors(n)))), j = 1 .. nops(op(2, ifactors(n))))) end if end proc: seq(a(n), n = 1 .. 100); # Emeric Deutsch, May 20 2015
MATHEMATICA
Table[If[n == 1, 0, Min @@ Last /@ FactorInteger[n]], {n, 100}] (* Ray Chandler, Jan 24 2006 *)
PROG
(Haskell)
a051904 1 = 0
a051904 n = minimum $ a124010_row n -- Reinhard Zumkeller, Jul 15 2012
(PARI) a(n)=vecmin(factor(n)[, 2]) \\ Charles R Greathouse IV, Nov 19 2012
(Scheme) (define (A051904 n) (cond ((= 1 n) 0) ((= 1 (A001221 n)) (A001222 n)) (else (min (A067029 n) (A051904 (A028234 n)))))) ;; Antti Karttunen, Jul 12 2017
(Python)
from sympy import factorint
def a(n):
f = factorint(n)
l = [f[p] for p in f]
return 0 if n == 1 else min(l)
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 13 2017
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Dec 16 1999
STATUS
approved