[go: up one dir, main page]

login
A051027
a(n) = sigma(sigma(n)) = sum of the divisors of the sum of the divisors of n.
101
1, 4, 7, 8, 12, 28, 15, 24, 14, 39, 28, 56, 24, 60, 60, 32, 39, 56, 42, 96, 63, 91, 60, 168, 32, 96, 90, 120, 72, 195, 63, 104, 124, 120, 124, 112, 60, 168, 120, 234, 96, 252, 84, 224, 168, 195, 124, 224, 80, 128, 195, 171, 120, 360, 195, 360, 186, 234, 168, 480, 96
OFFSET
1,2
REFERENCES
József Sándor, On the composition of some arithmetic functions, Studia Univ. Babeș-Bolyai, Vol. 34, No. 1 (1989), pp. 7-14.
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 39.
FORMULA
a(n) = A000203(A000203(n)). - Zak Seidov, Aug 29 2012
a(p) = sigma(p+1) = A000203(p+1), for p prime. - Wesley Ivan Hurt, Feb 14 2014
a(n) = 2*n iff n = 2^q with M_(q+1) = 2^(q+1) - 1 is a Mersenne prime, hence iff n = 2^q with q in A090748. - Bernard Schott, Aug 08 2019
a(n) >= 2*n for even n, with equality only when n = 2^k and 2^(k+1) - 1 is prime (Sándor, 1989). - Amiram Eldar, Mar 09 2021
EXAMPLE
a(2) = 4 because sigma(2)=1+2=3 and sigma(3)=1+3=4. - Zak Seidov, Aug 29 2012
MAPLE
with(numtheory): [seq(sigma(sigma(n)), n=1..100)];
MATHEMATICA
DivisorSigma[1, DivisorSigma[1, Range[100]]] (* Zak Seidov, Aug 29 2012 *)
PROG
(PARI) a(n)=sigma(sigma(n)); \\ Joerg Arndt, Feb 16 2014
(Python)
from sympy import divisor_sigma as sigma
def a(n): return sigma(sigma(n))
print([a(n) for n in range(1, 62)]) # Michael S. Branicky, Dec 05 2021
CROSSREFS
Cf. A000203.
Sequence in context: A310934 A310935 A353804 * A377990 A353802 A291402
KEYWORD
easy,nice,nonn,look
AUTHOR
STATUS
approved