OFFSET
1,6
COMMENTS
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1).
a(A212164(n)) = 0; a(A212166(n)) = 1; a(A006881(n)) = 2; a(A190107(n)) = 3; a(A085987(n)) = 4; a(A225228(n)) = 5; a(A179670(n)) = 7; a(A162143(n)) = 8; a(A190108(n)) = 11; a(A212167(n)) > 0; a(A212168(n)) > 1. - Reinhard Zumkeller, May 03 2013
The comment that a(A212164(n)) = 0 is incorrect. For example, 3600 belongs to A212164 but a(3600) = 1. The positions of zeros in this sequence are A293243. - Gus Wiseman, Oct 10 2017
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
FORMULA
Dirichlet g.f.: prod{n is squarefree and > 1}(1+1/n^s).
EXAMPLE
The a(30) = 5 factorizations are: 2*3*5, 2*15, 3*10, 5*6, 30. The a(180) = 5 factorizations are: 2*3*5*6, 2*3*30, 2*6*15, 3*6*10, 6*30. - Gus Wiseman, Oct 10 2017
MAPLE
N:= 1000: # to get a(1)..a(N)
A:= Vector(N):
A[1]:= 1:
for n from 2 to N do
if numtheory:-issqrfree(n) then
S:= [$1..N/n]; T:= n*S; A[T]:= A[T]+A[S]
fi;
od:
convert(A, list); # Robert Israel, Oct 10 2017
MATHEMATICA
sqfacs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[sqfacs[n/d], Min@@#>d&]], {d, Select[Rest[Divisors[n]], SquareFreeQ]}]];
Table[Length[sqfacs[n]], {n, 100}] (* Gus Wiseman, Oct 10 2017 *)
PROG
(Haskell)
import Data.List (subsequences, genericIndex)
a050326 n = genericIndex a050326_list (n-1)
a050326_list = 1 : f 2 where
f x = (if x /= s then a050326 s
else length $ filter (== x) $ map product $
subsequences $ tail $ a206778_row x) : f (x + 1)
where s = a046523 x
-- Reinhard Zumkeller, May 03 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Oct 15 1999
STATUS
approved