[go: up one dir, main page]

login
A046388
Odd numbers of the form p*q where p and q are distinct primes.
92
15, 21, 33, 35, 39, 51, 55, 57, 65, 69, 77, 85, 87, 91, 93, 95, 111, 115, 119, 123, 129, 133, 141, 143, 145, 155, 159, 161, 177, 183, 185, 187, 201, 203, 205, 209, 213, 215, 217, 219, 221, 235, 237, 247, 249, 253, 259, 265, 267, 287, 291, 295, 299, 301, 303
OFFSET
1,1
COMMENTS
These are the odd squarefree semiprimes.
These numbers k have the property that k is a Fermat pseudoprime for at least two bases 1 < b < k - 1. That is, b^(k - 1) == 1 (mod k). See sequence A175101 for the number of bases. - Karsten Meyer, Dec 02 2010
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
FORMULA
Sum_{n>=1} 1/a(n)^s = (1/2)*(P(s)^2 - P(2*s)) + 1/4^s - P(s)/2^s, for s>1, where P is the prime zeta function. - Amiram Eldar, Nov 21 2020
MATHEMATICA
max = 300; A046388 = Sort@Flatten@Table[Prime[m] Prime[n], {n, 3, Ceiling[PrimePi[max/3]]}, {m, 2, n - 1}]; Select[A046388, # < max &] (* Alonso del Arte based on Robert G. Wilson v's program for A006881, Oct 24 2011 *)
PROG
(Haskell)
a046388 n = a046388_list !! (n-1)
a046388_list = filter ((== 2) . a001221) a056911_list
-- Reinhard Zumkeller, Jan 02 2014
(PARI) isok(n) = (n % 2) && (bigomega(n) == 2) && (omega(n)==2); \\ Michel Marcus, Feb 05 2015
(Python)
from sympy import factorint
def ok(n):
if n < 2 or n%2 == 0: return False
f = factorint(n)
return len(f) == 2 and sum(f.values()) == 2
print([k for k in range(304) if ok(k)]) # Michael S. Branicky, May 03 2022
(Python)
from math import isqrt
from sympy import primepi, primerange
def A046388(n):
if n == 1: return 15
def f(x): return int(n-1+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f, n, n) # Chai Wah Wu, Sep 10 2024
CROSSREFS
Intersection of A005117 and A046315, or equally, of A005408 and A006881, or of A001358 and A056911.
Union of A080774 and A190299, which the latter is the union of A131574 and A016105.
Subsequence of A024556 and of A225375.
Cf. A353481 (characteristic function).
Different from A056913, A098905, A225375.
Sequence in context: A329229 A146166 A024556 * A056913 A002557 A128907
KEYWORD
nonn
AUTHOR
Patrick De Geest, Jun 15 1998
EXTENSIONS
I removed some ambiguity in the definition and edited the entry, merging in some material from A146166. - N. J. A. Sloane, May 09 2013
STATUS
approved