[go: up one dir, main page]

login
A046386
Products of exactly four distinct primes.
66
210, 330, 390, 462, 510, 546, 570, 690, 714, 770, 798, 858, 870, 910, 930, 966, 1110, 1122, 1155, 1190, 1218, 1230, 1254, 1290, 1302, 1326, 1330, 1365, 1410, 1430, 1482, 1518, 1554, 1590, 1610, 1722, 1770, 1785, 1794, 1806, 1830, 1870, 1914, 1938, 1974
OFFSET
1,1
COMMENTS
A squarefree subsequence of A033993. Numbers like 420 = 2^2*3*5*7 with at least one prime exponent greater than 1 in the prime signature are excluded here. - R. J. Mathar, Apr 03 2011
Numbers such that omega(n) = bigomega(n) = 4. - Michel Marcus, Dec 15 2015
FORMULA
Intersection of A014613 (product of 4 primes) and A033993 (divisible by 4 distinct primes). - M. F. Hasler, Mar 24 2022
EXAMPLE
210 = 2*3*5*7;
330 = 2*3*5*11;
390 = 2*3*5*13;
462 = 2*3*7*11.
MATHEMATICA
fQ[n_] := Last /@ FactorInteger[n] == {1, 1, 1, 1}; Select[ Range[2000], fQ[ # ] &] (* Robert G. Wilson v, Aug 04 2005 *)
PROG
(PARI) is(n)=factor(n)[, 2]==[1, 1, 1, 1]~ \\ Charles R Greathouse IV, Sep 17 2015
(PARI) is(n) = omega(n)==4 && bigomega(n)==4 \\ Hugo Pfoertner, Dec 18 2018
(Python)
from math import isqrt
from sympy import primepi, primerange, integer_nthroot
def A046386(n):
def f(x): return int(n+x-sum(primepi(x//(k*m*r))-c for a, k in enumerate(primerange(integer_nthroot(x, 4)[0]+1), 1) for b, m in enumerate(primerange(k+1, integer_nthroot(x//k, 3)[0]+1), a+1) for c, r in enumerate(primerange(m+1, isqrt(x//(k*m))+1), b+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f) # Chai Wah Wu, Aug 29 2024
CROSSREFS
Products of exactly k distinct primes, for k = 1 to 6: A000040, A006881. A007304, A046386, A046387, A067885.
Cf. A001221 (omega), A001222 (bigomega), A014613 (bigomega(N) = 4) and A033993 (omega(N) = 4).
Cf. A046402 (4 palindromic prime factors).
Sequence in context: A074159 A033993 A350373 * A229272 A046402 A258359
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved