[go: up one dir, main page]

login
A046309
Numbers that are divisible by at least 8 primes (counted with multiplicity).
4
256, 384, 512, 576, 640, 768, 864, 896, 960, 1024, 1152, 1280, 1296, 1344, 1408, 1440, 1536, 1600, 1664, 1728, 1792, 1920, 1944, 2016, 2048, 2112, 2160, 2176, 2240, 2304, 2400, 2432, 2496, 2560, 2592, 2688, 2816, 2880, 2916, 2944, 3024, 3072, 3136
OFFSET
1,1
LINKS
FORMULA
Product p_i^e_i with Sum e_i >= 8.
MATHEMATICA
Select[Range[3200], PrimeOmega[#]>7&] (* Harvey P. Dale, May 29 2013 *)
PROG
(PARI) is(n)=bigomega(n)>7 \\ Charles R Greathouse IV, Sep 17 2015
(Python)
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi
def A046309(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+primepi(x)+sum(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, i)) for i in range(2, 8)))
kmin, kmax = 1, 2
while f(kmax) >= kmax:
kmax <<= 1
while True:
kmid = kmax+kmin>>1
if f(kmid) < kmid:
kmax = kmid
else:
kmin = kmid
if kmax-kmin <= 1:
break
return kmax # Chai Wah Wu, Aug 23 2024
CROSSREFS
Cf. A046310.
Sequence in context: A345534 A345786 A186473 * A036332 A114987 A046310
KEYWORD
nonn
AUTHOR
Patrick De Geest, Jun 15 1998
STATUS
approved