[go: up one dir, main page]

login
A036988
Has simplest possible tree complexity of all transcendental sequences.
5
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1
OFFSET
0,1
LINKS
H. Niederreiter and M. Vielhaber, Tree complexity and a doubly exponential gap between structured and random sequences, J. Complexity, 12 (1996), 187-198.
FORMULA
a(n) = 1 iff, in the binary expansion of n, reading from right to left, the number of 1's never exceeds the number of 0's.
a(n) = A063524(A036989(n)). - Reinhard Zumkeller, Jul 31 2013
MATHEMATICA
(* b = A036989 *) b[0] = 1; b[n_?EvenQ] := b[n] = Max[b[n/2] - 1, 1]; b[n_] := b[n] = b[(n-1)/2] + 1; a[n_] := Boole[b[n] == 1]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Nov 05 2013, after Reinhard Zumkeller *)
PROG
(Haskell)
a036988 = a063524 . a036989 -- Reinhard Zumkeller, Jul 31 2013
CROSSREFS
Cf. A036989. Characteristic function of A036990.
Sequence in context: A357385 A316533 A085405 * A108357 A309848 A326822
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Sep 25 2000
STATUS
approved