[go: up one dir, main page]

login
A034470
Prime numbers using only the curved digits 0, 2, 3, 5, 6, 8 and 9.
6
2, 3, 5, 23, 29, 53, 59, 83, 89, 223, 229, 233, 239, 263, 269, 283, 293, 353, 359, 383, 389, 503, 509, 523, 563, 569, 593, 599, 653, 659, 683, 809, 823, 829, 839, 853, 859, 863, 883, 929, 953, 983, 2003, 2029, 2039, 2053, 2063, 2069, 2083, 2089, 2099, 2203
OFFSET
1,1
COMMENTS
Intersection of A000040 and A028374. - K. D. Bajpai, Sep 07 2014
LINKS
EXAMPLE
From K. D. Bajpai, Sep 07 2014: (Start)
29 is prime and is composed only of the curved digits 2 and 9.
359 is prime and is composed only of the curved digits 3, 5 and 9.
(End)
20235869 is the smallest instance using all curved digits. - Michel Marcus, Sep 07 2014
MAPLE
N:= 4: # to get all entries with at most N digits
S:= {0, 2, 3, 5, 6, 8, 9}:
T:= S:
for j from 2 to N do
T:= map(t -> seq(10*t+s, s=S), T);
od:
select(isprime, T);
# In Maple 11 and earlier, uncomment the next line:
# sort(convert(%, list)); # Robert Israel, Sep 07 2014
MATHEMATICA
Select[Range[2222], PrimeQ[#] && Union[Join[IntegerDigits[#], {0, 2, 3, 5, 6, 8, 9}]] == {0, 2, 3, 5, 6, 8, 9} &] (* RGWv *)
Select[Prime[Range[500]], Intersection[IntegerDigits[#], {1, 4, 7}] == {} &] (* K. D. Bajpai, Sep 07 2014 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Robert G. Wilson v, Jan 24 2003
STATUS
approved