[go: up one dir, main page]

login
A032456
Numbers k such that 159*2^k + 1 is prime.
1
6, 7, 9, 18, 19, 22, 30, 34, 42, 106, 190, 262, 339, 354, 379, 478, 523, 690, 718, 855, 963, 1087, 2478, 3309, 3862, 4155, 5098, 6678, 12898, 14226, 14274, 18738, 20065, 24390, 44079, 103417, 108850, 112374, 142462, 280438, 514927, 650934, 689437, 1579426
OFFSET
1,1
COMMENTS
The subsequence of prime values starts 7, 19, 379, 523, 1087, ... - Muniru A Asiru, Apr 28 2019
MAPLE
select(k->isprime(159*2^k+1), [$0..1000]); # Muniru A Asiru, Dec 21 2018
MATHEMATICA
Select[Range[1000], PrimeQ[159*2^# + 1] & ] (* Robert Price, Dec 18 2018 *)
PROG
(PARI) is(n)=ispseudoprime(159*2^n+1) \\ Charles R Greathouse IV, Jun 13 2017
(Magma) [n: n in [1..1000] | IsPrime(159*2^n+1)]; // G. C. Greubel, Apr 28 2019
(Sage) [n for n in (1..1000) if is_prime(159*2^n+1)] # G. C. Greubel, Apr 28 2019
(GAP) Filtered([1..1000], k-> IsPrime(159*2^k+1)); # G. C. Greubel, Apr 28 2019
CROSSREFS
Sequence in context: A289547 A329912 A187922 * A228442 A328644 A164989
KEYWORD
nonn,hard
EXTENSIONS
a(36)-a(44) from the Ray Ballinger and Wilfrid Keller link by Robert Price, Dec 18 2018
STATUS
approved