[go: up one dir, main page]

login
A029697
Number of words of length 2n in the 6 transpositions of S[ 4 ] equivalent to the identity.
1
6, 120, 3936, 140160, 5039616, 181401600, 6530359296, 235092541440, 8463329918976, 304679870791680, 10968475323334656, 394865111539384320, 14215144015015182336, 511745184538935951360, 18422826643395251798016, 663221759162203294924800
OFFSET
1,1
FORMULA
a(n) = (9*4^n+36^n)/12.
a(n) = 40*a(n-1)-144*a(n-2). - Colin Barker, May 28 2015
G.f.: -6*x*(20*x-1) / ((4*x-1)*(36*x-1)). - Colin Barker, May 28 2015
MATHEMATICA
LinearRecurrence[{40, -144}, {6, 120}, 20] (* Harvey P. Dale, Jun 14 2024 *)
PROG
(Magma) [(9*4^n+36^n)/12: n in [1..15]]; // Vincenzo Librandi, Jun 30 2011
(PARI) Vec(-6*x*(20*x-1) / ((4*x-1)*(36*x-1)) + O(x^100)) \\ Colin Barker, May 28 2015
CROSSREFS
Sequence in context: A075844 A356506 A354429 * A248045 A280627 A196688
KEYWORD
nonn,easy
AUTHOR
Paolo Dominici (pl.dm(AT)libero.it)
STATUS
approved