[go: up one dir, main page]

login
A027868
Number of trailing zeros in n!; highest power of 5 dividing n!.
70
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 18, 18, 18, 18, 18, 19
OFFSET
0,11
COMMENTS
Also the highest power of 10 dividing n! (different from A054899). - Hieronymus Fischer, Jun 18 2007
a(n) = (n - A053824(n))/4. - Lekraj Beedassy, Nov 01 2010
Alternatively, a(n) equals the expansion of the base-5 representation A007091(n) of n (i.e., where successive positions from right to left stand for 5^n or A000351(n)) under a scale of notation whose successive positions from right to left stand for (5^n - 1)/4 or A003463(n); for instance, n = 7392 has base-5 expression 2*5^5 + 1*5^4 + 4*5^3 + 0*5^2 + 3*5^1 + 2*5^0, so that a(7392) = 2*781 + 1*156 + 4*31 + 0*6 + 3*1 + 2*0 = 1845. - Lekraj Beedassy, Nov 03 2010
Partial sums of A112765. - Hieronymus Fischer, Jun 06 2012
Also the number of trailing zeros in A000165(n) = (2*n)!!. - Stefano Spezia, Aug 18 2024
REFERENCES
M. Gardner, "Factorial Oddities." Ch. 4 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, 1978, pp. 50-65.
LINKS
Hieronymus Fischer, Table of n, a(n) for n = 0..10000 (first 1000 terms from T. D. Noe)
David S. Hart, James E. Marengo, Darren A. Narayan, and David S. Ross, On the number of trailing zeros in n!, College Math. J., 39(2):139-145, 2008.
Enrique Pérez Herrero, Trailing Zeros in n!, Psychedelic Geometry Blogspot.
S. Ikeda and K. Matsuoka, On transcendental numbers generated by certain integer sequences, Siauliai Math. Semin., 8 (16) 2013, 63-69.
S-C Liu and J. C.-C. Yeh, Catalan numbers modulo 2^k, J. Int. Seq. 13 (2010), 10.5.4, eq (5).
A. M. Oller-Marcén, A new look at the trailing zeros of n!, arXiv:0906.4868v1 [math.NT], 2009.
A. M. Oller-Marcén and J. Maria Grau, On the Base-b Expansion of the Number of Trailing Zeros of b^k!, J. Int. Seq. 14 (2011) 11.6.8
Eric Weisstein's World of Mathematics, Factorial.
FORMULA
a(n) = Sum_{i>=1} floor(n/5^i).
a(n) = (n - A053824(n))/4.
From Hieronymus Fischer, Jun 25 2007 and Aug 13 2007, edited by M. F. Hasler, Dec 27 2019: (Start)
G.f.: g(x) = Sum_{k>0} x^(5^k)/(1-x^(5^k))/(1-x).
a(n) = Sum_{k=5..n} Sum_{j|k, j>=5} (floor(log_5(j)) - floor(log_5(j-1))).
G.f.: g(x) = L[b(k)](x)/(1-x)
where L[b(k)](x) = Sum_{k>=0} b(k)*x^k/(1-x^k) is a Lambert series with b(k) = 1, if k>1 is a power of 5, else b(k) = 0.
G.f.: g(x) = Sum_{k>0} c(k)*x^k/(1-x),
where c(k) = Sum_{j>1, j|k} floor(log_5(j)) - floor(log_5(j - 1)).
Recurrence:
a(n) = floor(n/5) + a(floor(n/5));
a(5*n) = n + a(n);
a(n*5^m) = n*(5^m-1)/4 + a(n).
a(k*5^m) = k*(5^m-1)/4, for 0 <= k < 5, m >= 0.
Asymptotic behavior:
a(n) = n/4 + O(log(n)),
a(n+1) - a(n) = O(log(n)), which follows from the inequalities below.
a(n) <= (n-1)/4; equality holds for powers of 5.
a(n) >= n/4 - 1 - floor(log_5(n)); equality holds for n = 5^m-1, m > 0.
lim inf (n/4 - a(n)) = 1/4, for n -> oo.
lim sup (n/4 - log_5(n) - a(n)) = 0, for n -> oo.
lim sup (a(n+1) - a(n) - log_5(n)) = 0, for n -> oo.
(End)
a(n) <= A027869(n). - Reinhard Zumkeller, Jan 27 2008
10^a(n) = A000142(n) / A004154(n). - Reinhard Zumkeller, Nov 24 2012
EXAMPLE
a(100) = 24.
a(10^3) = 249.
a(10^4) = 2499.
a(10^5) = 24999.
a(10^6) = 249998.
a(10^7) = 2499999.
a(10^8) = 24999999.
a(10^9) = 249999998.
a(10^n) = 10^n/4 - 3 for 10 <= n <= 15 except for a(10^14) = 10^14/4 - 2. - M. F. Hasler, Dec 27 2019
MAPLE
0, seq(add(floor(n/5^i), i=1..floor(log[5](n))), n=1..100); # Robert Israel, Nov 13 2014
MATHEMATICA
Table[t = 0; p = 5; While[s = Floor[n/p]; t = t + s; s > 0, p *= 5]; t, {n, 0, 100} ]
Table[ IntegerExponent[n!], {n, 0, 80}] (* Robert G. Wilson v *)
zOF[n_Integer?Positive]:=Module[{maxpow=0}, While[5^maxpow<=n, maxpow++]; Plus@@Table[Quotient[n, 5^i], {i, maxpow-1}]]; Attributes[zOF]={Listable}; Join[{0}, zOF[ Range[100]]] (* Harvey P. Dale, Apr 11 2022 *)
PROG
(Haskell)
a027868 n = sum $ takeWhile (> 0) $ map (n `div`) $ tail a000351_list
-- Reinhard Zumkeller, Oct 31 2012
(PARI) a(n)={my(s); while(n\=5, s+=n); s} \\ Charles R Greathouse IV, Nov 08 2012, edited by M. F. Hasler, Dec 27 2019
(PARI) a(n)=valuation(n!, 5) \\ Charles R Greathouse IV, Nov 08 2012
(PARI) apply( A027868(n)=(n-sumdigits(n, 5))\4, [0..99]) \\ M. F. Hasler, Dec 27 2019
(Python)
from sympy import multiplicity
A027868, p5 = [0, 0, 0, 0, 0], 0
for n in range(5, 10**3, 5):
p5 += multiplicity(5, n)
A027868.extend([p5]*5) # Chai Wah Wu, Sep 05 2014
(Python)
def A027868(n): return 0 if n<5 else n//5 + A027868(n//5) # David Radcliffe, Jun 26 2016
(Python)
from sympy.ntheory.factor_ import digits
def A027868(n): return n-sum(digits(n, 5)[1:])>>2 # Chai Wah Wu, Oct 18 2024
(Magma) [Valuation(Factorial(n), 5): n in [0..80]]; // Bruno Berselli, Oct 11 2021
CROSSREFS
See A000966 for the missing numbers. See A011371 and A054861 for analogs involving powers of 2 and 3.
Cf. also A000142, A004154.
Sequence in context: A154099 A105511 A187183 * A060384 A105564 A241766
KEYWORD
nonn,base,nice,easy
EXTENSIONS
Examples added by Hieronymus Fischer, Jun 06 2012
STATUS
approved