[go: up one dir, main page]

login
A023427
Number of Dyck n-paths with ascents and descents of length equal to 1 (mod 4).
12
1, 1, 1, 1, 1, 2, 4, 7, 11, 17, 28, 49, 87, 152, 262, 453, 794, 1408, 2507, 4462, 7943, 14179, 25415, 45713, 82398, 148731, 268859, 486890, 883411, 1605582, 2922259, 5325377, 9716564, 17750332, 32464980, 59443403, 108951953, 199886003, 367052947, 674620772
OFFSET
0,6
COMMENTS
Number of secondary structures of size n having no stacks of odd length (see Hofacker et al., p. 209). - Emeric Deutsch, Dec 26 2011
a(n) is the number of Dyck n-paths all of whose ascents and descents have lengths equal to 1 (mod 4). The a(5) = 2 paths for n=5 are: UDUDUDUDUD, UUUUUDDDDD. - Alois P. Heinz, May 09 2012
LINKS
I. L. Hofacker, P. Schuster and P. F. Stadler, Combinatorics of RNA secondary structures, Discrete Appl. Math., 88, 1998, 207-237.
P. R. Stein and M. S. Waterman, On some new sequences generalizing the Catalan and Motzkin numbers, Discrete Math., 26 (1979), 261-272.
FORMULA
a(n) = A202845(n,0). A(x) satisfies A=1+x*A+f*A*(A-1)/(1+f), where f=x^4/(1-x^4). - Emeric Deutsch, Dec 26 2011
G.f.: A(x) = ((1-x+x^4) - sqrt((1-x+x^4)^2 - 4*x^4))/(2*x^4). - Paul D. Hanna, Oct 29 2012
G.f. satisfies: A(x) = 1 + x*A(x)/(1 - x^4*A(x)). - Paul D. Hanna, Oct 29 2012
G.f.: 1 + x*exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^(3*k) ). - Paul D. Hanna, Oct 29 2012
a(n) = A216116(n-1) for n>0.
Recurrence: (n+4)*a(n) = (2*n+5)*a(n-1) - (n+1)*a(n-2) + 2*(n-2)*a(n-4) + (2*n-7)*a(n-5) - (n-8)*a(n-8). - Vaclav Kotesovec, Sep 16 2013
a(n) ~ sqrt(-4*c^2-3*c^3+4-4*c)*(1+2*c-c^3)^n*(-5*c^3-3*c^2+9*c+10) / (2*n^(3/2)*sqrt(Pi)), where c = 1/2*sqrt((4+(155/2-3*sqrt(849)/2)^(1/3) +(155/2+3*sqrt(849)/2)^(1/3))/3) - 1/2*sqrt(8/3-1/3*(155/2-3*sqrt(849)/2)^(1/3) - 1/3*(155/2+3*sqrt(849)/2)^(1/3) + 2*sqrt(3/(4+(155/2-3*sqrt(849)/2)^(1/3) + (155/2+3*sqrt(849)/2)^(1/3)))) = 0.5248885986564... is the root of the equation c^4-2*c^2-c+1=0. - Vaclav Kotesovec, Sep 16 2013
a(n) = Sum_{k=0..(n-1)/3} C(n-3*k,k)*C(n-3*k,k+1)/(n-3*k), n>0, a(0)=1. - Vladimir Kruchinin, Jan 21 2019
EXAMPLE
(5)=2; representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of odd length, respectively. - Emeric Deutsch, Dec 26 2011
MAPLE
f := z^4/(1-z^4): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 42)): seq(coeff(Gser, z, n), n = 0 .. 39); # Emeric Deutsch, Dec 26 2011
a:= proc(n) option remember;
`if`(n=0, 1, a(n-1) +add(a(k)*a(n-4-k), k=1..n-4))
end:
seq(a(n), n=0..50); # Alois P. Heinz, May 09 2012
MATHEMATICA
Clear[ a ]; a[ 0 ]=1; a[ n_Integer ] := a[ n ]=a[ n-1 ]+Sum[ a[ k ]*a[ n-4-k ], {k, 1, n-4} ];
CoefficientList[Series[((1-x+x^4) - Sqrt[(1-x+x^4)^2 - 4*x^4])/(2*x^4), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 16 2013 *)
PROG
(PARI) {a(n)=polcoeff(((1-x+x^4) - sqrt((1-x+x^4)^2 - 4*x^4 +x^5*O(x^n)))/(2*x^4), n)} \\ Paul D. Hanna, Oct 29 2012
(PARI) {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1 + x*A/(1-x^4*A+x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Oct 29 2012
(Maxima)
a(n):=if n=0 then 1 else sum(binomial(n-3*q, ((q)))*binomial((n-3*q), (q+1))/(n-3*q), q, 0, (n-1)/3); /* Vladimir Kruchinin, Jan 21 2019 */
KEYWORD
nonn,easy
EXTENSIONS
New name, using a comment of Alois P. Heinz, from Peter Luschny, Jan 21 2019
STATUS
approved