[go: up one dir, main page]

login
A022098
Fibonacci sequence beginning 1, 8.
14
1, 8, 9, 17, 26, 43, 69, 112, 181, 293, 474, 767, 1241, 2008, 3249, 5257, 8506, 13763, 22269, 36032, 58301, 94333, 152634, 246967, 399601, 646568, 1046169, 1692737, 2738906, 4431643, 7170549, 11602192, 18772741, 30374933, 49147674, 79522607, 128670281
OFFSET
0,2
COMMENTS
a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(8; n-1-k, k) with n >= 1, a(-1) = 7. These are the SW-NE diagonals in P(8; n, k), the (8, 1) Pascal triangle A093565. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
Pisano period lengths: 1, 3, 8, 6, 4, 24, 16, 12, 24, 12, 10, 24, 28, 48, 8, 24, 36, 24, 18, 12, ... (is this the same as A106291?). - R. J. Mathar, Aug 10 2012
Also the sum of five consecutive Lucas numbers starting with L(-3). - Alonso del Arte, Sep 26 2013
The Pisano period lengths of this sequence are exactly the same as those of the Lucas sequence (A000032), given in A106291. - Klaus Purath, Apr 20 2019
FORMULA
a(n) = a(n-1) + a(n-2) for n>1, a(0)=1, a(1)=8, and a(-1):=7.
G.f.: (1 + 7*x)/(1 - x - x^2).
a(n) = ((1 + sqrt(5))^n - (1 - sqrt(5))^n)/(2^n*sqrt(5)) + 3.5*((1 + sqrt(5))^(n-1) - (1 - sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)) for n>0. - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = 2^(-1-n)*((1 - sqrt(5))^n*(-15 + sqrt(5)) + (1 + sqrt(5))^n*(15 + sqrt(5)))/sqrt(5). - Herbert Kociemba, Dec 18 2011
a(n) = 7*A000045(n) + A000045(n+1). - R. J. Mathar, Aug 10 2012
a(n) = 9*A000045(n) - A000045(n-2). - Bruno Berselli, Feb 20 2017
a(n) = Lucas(n+5) + Lucas(n-1) - 3*Lucas(n+2). - Bruno Berselli, Dec 29 2016, corrected by Greg Dresden, Mar 02 2022
a(n) = Lucas(n+3) - Lucas(n-2). - Greg Dresden and Michael Nyc, Mar 02 2022
MATHEMATICA
LinearRecurrence[{1, 1}, {1, 8}, 40] (* Alonso del Arte, Sep 26 2013 *)
CoefficientList[Series[(1 + 7 x)/(1 - x - x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 27 2013 *)
Table[LucasL[n + 3] + LucasL[n - 3] - 3 LucasL[n], {n, 2, 40}] (* Bruno Berselli, Dec 30 2016 *)
PROG
(Magma) a0:=1; a1:=8; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]]; // Bruno Berselli, Feb 12 2013
(PARI) a(n)=([0, 1; 1, 1]^n*[1; 8])[1, 1] \\ Charles R Greathouse IV, Oct 07 2016
CROSSREFS
a(n) = A109754(7, n+1) = A101220(7, 0, n+1).
Sequence in context: A353057 A274406 A261454 * A129659 A041130 A041307
KEYWORD
nonn,easy
STATUS
approved