[go: up one dir, main page]

login
A015384
Gaussian binomial coefficient [ n,9 ] for q=-12.
13
1, -4762874171, 24747240402737283733, -127616472670861852065241422635, 658504724872263265466971967899949697493, -3397726086395967282512946130260694347212577518123
OFFSET
9,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..9} ((-12)^(n-i+1)-1)/((-12)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
MATHEMATICA
Table[QBinomial[n, 9, -12], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Magma) r:=9; q:=-12; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015381, A015382, A015383, A015385.
Sequence in context: A233494 A175568 A224472 * A233615 A217146 A072018
KEYWORD
sign,easy
STATUS
approved