[go: up one dir, main page]

login
A013965
a(n) = sigma_17(n), the sum of the 17th powers of the divisors of n.
10
1, 131073, 129140164, 17180000257, 762939453126, 16926788715972, 232630513987208, 2251816993685505, 16677181828806733, 100000762939584198, 505447028499293772, 2218628050709022148, 8650415919381337934, 30491579359845314184, 98526126098761952664
OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
FORMULA
G.f.: Sum_{k>=1} k^17*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
Dirichlet g.f.: zeta(s-17)*zeta(s). - Ilya Gutkovskiy, Sep 10 2016
Empirical: Sum_{n>=1} a(n)/exp(2*Pi*n) = 43867/28728, also equals Bernoulli(18)/36. - Simon Plouffe, May 06 2023
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(17*e+17)-1)/(p^17-1).
Sum_{k=1..n} a(k) = zeta(18) * n^18 / 18 + O(n^19). (End)
MATHEMATICA
DivisorSigma[17, Range[20]] (* Harvey P. Dale, May 30 2013 *)
PROG
(Sage) [sigma(n, 17)for n in range(1, 14)] # Zerinvary Lajos, Jun 04 2009
(Magma) [DivisorSigma(17, n): n in [1..20]]; // Vincenzo Librandi, Sep 10 2016
(PARI) my(N=99, q='q+O('q^N)); Vec(sum(n=1, N, n^17*q^n/(1-q^n))) \\ Altug Alkan, Sep 10 2016
(PARI) a(n) = sigma(n, 17); \\ Amiram Eldar, Oct 29 2023
KEYWORD
nonn,easy,mult
STATUS
approved