OFFSET
1,1
REFERENCES
H. Cohen, Course in Computational Alg. No. Theory, Springer, 1993, p. 229.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..54 (full sequence, from Weisstein's World of Mathematics)
Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
Eric Weisstein's World of Mathematics, Class Number
Sung Sik Woo, Cubic formula and cubic curves, Commun. Korean Math. Soc. 28 (2013), No. 2, pp. 209-224.
MATHEMATICA
Union[(-NumberFieldDiscriminant[Sqrt[-#]] &) /@ Select[Range[1250], NumberFieldClassNumber[Sqrt[-#]] == 4 &]] (* Jean-François Alcover, Jun 27 2012 *)
PROG
(PARI) ok(n)={isfundamental(-n) && quadclassunit(-n).no == 4} \\ Andrew Howroyd, Jul 20 2018
(Sage) [n for n in (1..2000) if is_fundamental_discriminant(-n) and QuadraticField(-n, 'a').class_number()==4] # G. C. Greubel, Mar 01 2019
CROSSREFS
KEYWORD
nonn,fini,full
AUTHOR
Eric Rains (rains(AT)caltech.edu)
EXTENSIONS
a(50)-a(54) added by Andrew Howroyd, Jul 20 2018
STATUS
approved