[go: up one dir, main page]

login
A010828
Expansion of Product_{k>=1} (1 - x^k)^22.
1
1, -22, 209, -1078, 2926, -1672, -15169, 47234, -31350, -107426, 218680, -266, -234707, -237006, 405878, 1444806, -2415413, -1091398, 3018169, 523050, 1618309, -7344304, -134905, 5365866, 5852, 17297588, -24278276
OFFSET
0,2
REFERENCES
Morris Newman, A table of the coefficients of the powers of eta(tau), Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
FORMULA
a(0) = 1, a(n) = -(22/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-22*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018
CROSSREFS
Sequence in context: A274982 A144249 A280475 * A022714 A302924 A125385
KEYWORD
sign
AUTHOR
STATUS
approved