[go: up one dir, main page]

login
A007827
Number of homeomorphically irreducible (or series-reduced) trees with n pendant nodes, or continua with n non-cut points, or leaves.
15
1, 1, 1, 1, 2, 3, 7, 13, 32, 73, 190, 488, 1350, 3741, 10765, 31311, 92949, 278840, 847511, 2599071, 8044399, 25082609, 78758786, 248803504, 790411028, 2523668997, 8095146289, 26076714609, 84329102797, 273694746208
OFFSET
0,5
COMMENTS
Also, number of unrooted multifurcating tree shapes with n leaves [see Felsenstein].
REFERENCES
M. Cropper, J. Combin. Math. Combin. Comp., Vol. 24 (1997), 177-184.
Joseph Felsenstein, Inferring Phylogenies. Sinauer Associates, Inc., 2004, p. 33 (Beware errors!).
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62.
S. B. Nadler Jr., Continuum Theory, Academic Press.
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
M. D. Hendy, C. H. C. Little, David Penny, Comparing trees with pendant vertices labelled, SIAM J. Appl. Math. 44 (5) (1984). See Table 1.
FORMULA
G.f.: 1+(1+x-B(x))*B(x) where B(x) = x+x^2+2*x^3+5*x^4+12*x^5+33*x^6+90*x^7+... is g.f. for A000669.
MAPLE
A := series(1+(1+x-B)*B, x, 30); # where B = g.f. for A000669; A007827 := n->coeff(A, x, n);
MATHEMATICA
(* a9 = A000669 *) max = 29; a9[1] = 1; a9[n_] := (s = Series[1/(1 - x), {x, 0, n}]; Do[s = Series[s/(1 - x^k)^Coefficient[s, x^k], {x, 0, n}], {k, 2, n}]; Coefficient[s, x^n]/2); b[x_] := Sum[a9[n] x^n, {n, 1, max}]; gf[x_] := 1 + (1 + x - b[x])*b[x]; CoefficientList[ Series[gf[x], {x, 0, max}], x] (* Jean-François Alcover, Aug 14 2012 *)
CROSSREFS
Cf. A000014 (series-reduced trees), A000055 (trees), A000311, A000669 (series-reduced planted trees by leaves), A059123 (homeomorphically irreducible rooted trees by nodes), A271205 (series-reduced trees by leaves and nodes).
Number of row entries of A064060.
Sequence in context: A003120 A032131 A324844 * A250308 A259145 A237255
KEYWORD
nonn,nice,easy
AUTHOR
Matthew Cropper (mmcrop01(AT)athena.louisville.edu).
EXTENSIONS
Corrected and extended by Christian G. Bower, Nov 15 1999
STATUS
approved